경사하강법

· 머신러닝
독립 변숫값을 변형시켜 가면서 함수의 최솟값을 갖도록 하는 독립변수를 구하는 방법인 경사하강법을 배우다. 1. 경사하강법 정의 MSE를 구하는 2 번째 방법인 경사하강법을 배우겠다. 사용할 모델은 sklearn.linear_model의 SGDRegression모델을 사용할 것이다. 경사하강법은 똑같이 MSE가 최소가 되게 하는 최적의 w(기울기)와 b(절편) 값을 찾는 방법이다. 기계가 스스로 학습한다는 딥러닝의 개념이 있게 하는 핵심 알고리즘이다. 원리는 우리가 시각화했던 그래프를 보면 MSE가 최솟값으로 가야 한다. 그럼 접선의 기울기가 0이 되어야 하기 때문에 기울기가 작아지는 쪽으로 계속 이동하여 값을 최적화하는 방법이다. 기울기가 양수이거나 음수인 건 상관이 없다. 그냥 절댓값이 0에 가까울수록..
이뮨01
'경사하강법' 태그의 글 목록